PROVISION FOR RADIATION LOSSES IN MEASURING
THE THERMAL CONDUCTIVITIES OF THIN PLATES
AND FILMS
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Formulas have been derived for the calculation of the coefficient of thermal conductivity for
thin plates and films; these are based on data from the measurements — by a nonsteady method
— for the case in which the transfer of heat to the specimen surface is comparable to the flow
of heat through the specimen.

In measuring the thermal conductivity of thin specimens such as, for example, plates and films made
of semiconductor materials, we must take into consideration the heat losses from the specimen surface,
since these, in this case, are comparable to the flow of heat through the specimen.

Let us initially examine how these losses were taken into consideration in a variant of a steady-state
measurement method. A test specimen of length I (see Fig. 1) connected to a heater unit is enclosed in a
container whose walls are kept at a constant temperature T;. We measure the thermal conductivity A as a
flow of heat is propagated along a specimen whose upper end has a temperature T, = const. The heat flow
q through the cross section of the specimen, at its lower end, is equal to q,—q;, where g, = ui is the power
of the heater; q, denotes the heat losses from the surface of the heater unit and the quantity of heat removed
through the wiring of the thermocouple and the heater. The magnitude of g, is chosen so as to satisfy the
condition AT « T, where AT denotes the temperature difference across the length of the specimen; here
we can assume that A(x) = const. The losses of the heat g, at the specified temperature T, = T, + AT are
determined experimentally (see below). We can neglect the thermal resistance of the points at which the
specimen comes into contact with the heater unit and the container in the case of thin specimens. At all
points of the heater unit — made of copper — we can assume the temperature to be constant and equal to T,.

The heat-conduction equation in this case can be presented in the form
T, _ C T,

Hp

Since Tx—T, « T, we can assume H(x) =~ const. The second term in the right-hand member of (1)
reflects the actual heat-transfer conditions all the more exactly, the smaller the fraction of the radiative
heat exchange between the specimen and the heater unit relative to the heat exchange between the specimen
and the container. This fraction can be reduced to a minimum by using a heater unit of appropriate shape
(see Fig.1). The transfer of heat through the gas surrounding the specimen, in this case, can be kept sub-
stantially lower than the radiation losses (given a sufficiently high vacuum in the container). Let us denote
Tx—T, = T and Hp/AS = u2. Since 8Tx/8t = 0 in the steady-state regime, we will have

o*T
0x?

— T = 0. (2)

The solution of this equation for the specified boundary conditions (T =0 for x = 0 and T = T—T, when x
=1):
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— Having measured T;—T,, u, i, H, and q, and knowing the constants S
z 4 and p, we can find ) from Eq. (4).
4 i We can determine the magnitude of g, by suspending the heater
Fig.1. Measurement circuit: block within the container from a thin and highly heat-resistant thread.
1) specimen; 2) heater unit; Setting the heater power u,i, in this case so that the heater tempera-
3) leads for the differential ture is Ty, we will find that q; = uyi,. We can also determine H in
thermocouple to measure T, similar fashion, attaching the test specimens to the surface of the cor-
~Ty; 4) heater leads and po- responding unit being heated.
tentiometer leads for the
measurement of u; 5) thermo- The calculations for the nonsteady method of measuring thermal
couple leads for the measure- conductivity, as proposed by Ioffe [1, 2], were performed by Kaganov
ment of Ty 6) container. [8) and by Swan [4]; however, Swan failed entirely to provide for the

heat losses from the specimen surfaces and from the unit, while in

Kaganov's paper the transfer of heat at the specimen surface is as-
sumed to be substantially smaller than the exchange of heat between the unit and the medium and is not in-
cluded in the formulas which he derived for the determination of A.

Let us examine the procedure for measurement by the nonsteady method. The measurement circuit
remains as before (see Fig. 1); however, in this case the heater is not switched on. The thermal conduc-
tivity of the specimen is determined from the relationship between the temperature difference T~ T, and
time. For thin specimens we easily satisfy the condition C,/C; « 1 and C; can always be made larger than
C, by 2 orders and more.

In the simplest case in which we neglect the transfer of heat involving the specimen, the heater unit,
and the ambient medium, and if we also neglect the heat capacity of the specimen, the difference T,— T, as
a function of time has the following form

T=®lexp(——l“(§—lt), )

where @7 =T whent = 0.

However, we can use expression (5) to determine the thermal conductivity only within a limited
range of temperatures T, and specimen thicknesses (the low temperatures and comparatively great thick-
nesses). In the remaining cases, we must make provision for radiation losses. The condition Cy/Cy < 1
substantially simplifies the solution of this problem.

The calculation is reduced to the solution of (1) for the following boundary conditions:
x=0; T=0;

w—p _OT _3S 9T  HT ©
o o~ C, oOx C,
We will demonstrate that when C,/C; <« 1 the first term in the right-hand member of (1) can be
equated to zero. Differentiation of (5) yields
aT AS
o ~—ci T’ !

If the heat transfer at the specimen surface is comparable to the heat flow through the specimen, the order
of magnitude for 8T/8t in (1) must be the same as in (7). Consequently,

CoT _ G T
H YT, E ®
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The second term in the right-hand member of (1) can be presented in the form

Hpl® T
S B

The quantity HplZ®/AS under our conditions is of the order of ity or tenths of a fraction; the first term in
the right-hand member of (1) can therefore be treated as negligibly small in comparison with the second
term. (However, if Hpl?/AS « 1, Eq. (1) assumes the form 8T/éx? = 0.) Physically this means that the tem-
perature distribution over the specimen length at any instant of time (after establishment of the regular
regime) differs very little from the distribution in the steady-state case, Equation (1) thus assumes the
form

T Hp 9
e s =0 ©

e., we find the solution for Eq. (2):
T =0shpx, (10)

however, in this case ® = @(t), while the boundary conditions are expressed by relationships (6). From
expressions (10) and (6) we obtain the following formula for T () when x = I:

T:Aexp[—( }g }Lcthpl—}-gﬂ) t], (11)
1

where A = const,

The expression for the rate of change in temperature, with consideration of the heat transfer, hence
has the form

m =

AS H,
g, wethul 2. (12)

In the special case in which p = 1, expanding cth 1] in series, and limiting ourselves to two of its terms,
we obtain

_ 1L /A8 le
m= E(T g ) (13)
Hence we easily determine A:
l Hpl

As with the steady-state measurement method, we can determine the magnitude of Hq by suspending
the heater unit within the container from a thread exh1b1t1ng great heat resistance. Then 7\ = 0 and Hpl = 0,
and from (14) we obtain
H, =mC,.

We can also determine H analogously, attaching the test specimen to the surface of a heater unit which ex~
hibits a known heat capacity.

NOTATION

T, is the container temperature;

T, is the heater-unit temperature;

T is the temperature of the point on the specimen at a distance % from the container;
1 is the specimen length;

S is the cross-sectional area of the specimen;

A is the coefficient of thermal conductivity for the Specimen;

C is the volume heat capacity of the specimen;

Cy  is the heat capacity of the specimen;

Cy is the heat capacity of the heater unit;

H is the heat-transfer coefficient;
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p is the perimeter of the specimen's cross section;

Ao is the power of the heater;

i is the heater current;

u is the heater voltage;

qq is the loss of heat from the surface of the heater unit and the loss of heat through the wiring of the

thermocouple and the heater;
ig, g are, respectively, the current and the voltage of the heater for the case in which A = 0;

Hg is the heat-transfer coefficient for the heater (radiation and removal of heat through the thermo-
couple wiring);
m is the rate of temperature change,
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